If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-5x^2+15x+80=0
a = -5; b = 15; c = +80;
Δ = b2-4ac
Δ = 152-4·(-5)·80
Δ = 1825
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1825}=\sqrt{25*73}=\sqrt{25}*\sqrt{73}=5\sqrt{73}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-5\sqrt{73}}{2*-5}=\frac{-15-5\sqrt{73}}{-10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+5\sqrt{73}}{2*-5}=\frac{-15+5\sqrt{73}}{-10} $
| 17=v/19 | | 7x+5=-7x-22 | | 4(m-2)+2m=8m+40 | | 7/6-3=5x/4 | | 2/5(x-8)=10 | | 4x+28=-56 | | 16x-38=90 | | 7*p=-36 | | -1/3(-35x)=378 | | -6(2y+2)=18-4(-4y-9) | | -16-1(6x+4)=6 | | .5^(n)=0.125 | | F(0)=x+9 | | 13g-9g-4=12 | | (M+2)(m+12)=0 | | -2=2.5x | | 80=39.17+0.50x | | x+4x+x+9=135 | | 16z-20z=12 | | C^2+56c=2025 | | -22=-8-b | | 3(a-7)=5(a+3) | | -7n-8n+-11n+-9=17 | | -5y+9=2(4y+6) | | u=1/6 | | 3x/3=5/3 | | 19g=22 | | 12=d/12 | | 5.4(3x-12)+3.2(2x+6)=88 | | 0.002x10=0.02 | | 2(w-12)+10=14 | | 6x^2/5+11^1/5+3=0 |